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Knowledge Graphs

« Aknowledge graph is a collection of real-world facts.
« They enable many downstream applications (NLP tasks, QA systems, etc)
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Knowledge Graph Reasoning

* Knowledge graphs are usually incomplete

« A fundamental task: predicting missing links (or facts) by reasoning on
existing facts

DA VINCI

Knowledge Graph
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Symbolic Methods & Neural Methods

Traditional Symbolic Reasoning Modern Representation Learning

liveln (Mina Miller, USA)

officialLanguage (USA, English) Observed Facts

Country = USA

Language = EngliNA

speakLanguage(Person, Language) < liveln(Person, Definite
Country) A officialLanguage (Country, Language) Horn rule

: Preflict + officialLang
Logical Inference English Embefding

Leayning

speakLanguage (Mina Miller, English) New fact [e]e]e]e]e]e]ele]0]
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Neural-Symbolic Reasoning

Leverage the advantages of both neural and symbolic reasoning for
knowledge graph reasoning

« Symbolic: ability of using domain knowledge, interpretability
* Neural: efficiency, capacity

One of the Challenges: Domain knowledge is encoded as
logical rules, logical rules are usually need to be specified by
hand
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Logical Rule Induction/Learning

* Given: a background KG g

* Goal: learn weighted chain-like Horn rule of the following form

a:rp(r,y) < rp(x,20) A A1y (Zn-1,Y)

where a€[0,1] is the confidence score associated with this rule, indicating how likely
the rule holds true.

liveln(a,c) < liveln(a,b) A isLocatedIn(b,c)

Logical Rules
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GAP Between Instance Rules and Template Rules

Instance Rules
hasGrandMother(Amy, Cara) & hasMother(Amy, Bess) A hasMother(Bess, Cara)
hasGrandMother(Bess, Dana) & hasMother(Bess, Cara) A hasMother(Cara, Dana)
hasGrandMother(Cara, Eva) < hasMother(Cara, Dana) A hasMother(Dana, Eva)

How to bridge the gap between
instance level observation and schema
level abstraction?

Template Rule
hasGrandMother(x, y) & hasMother(x, z) A hasMother(z, y)
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Previous Works

Rely on observed rule instances to evaluate the plausibility of logical rules.
O Limited scalability to KG size
O May not be reliable due to the widely existing missing facts in KGs

Ignore deductive nature of logical rules

O i.e., the ability to recombine known parts and rules to form new sequences while reasoning over
relational data

O eg, Question ?< hasMother(x, z;) A hasMother(z4,z,) A\ hasSon(z,, y)

hasMother(x, z;) A hasMother(z,, z;) A hasSon(z;, y)

N/

hasGrandMother(x, z,)

N\
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Our Proposed Method: RLogic

 Propose a new measure for rule evaluation based on the probability
that the rule body can be replaced by the rule head

q(rp = rilrp)

l approximate

Confidence: 3/4

hasGrandma hasGrandma hasMother

hasGrandMother(x, y) & hasMother(x, z) A hasMother(z, y)
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How to Incorporate Inductive Nature

* Arepresentation-learning based model can be used to learn q(r;, = ry|ry)
O E.g, a sequential model, such as RNN

O However, RNN directly models the entire sequence length without
explicitly capturing the deductive nature of logical rule

How to incorporate inductive nature to
break the learning into recursive process?
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Relation Path Encoder

« Basic idea: push deductive reasoning into rule learning

O reduce a long relation path [r, , 13,,,..., 1, _] by replacing the relation pair
[7b:, Tv, ] IN relation path with their head r;, recursively until the relation
path being transformed into a single head

- E.g., given a relation path [y, , 13, , 13, ]

Qhlrey oy 76,) = D 4(rhlris 75, q (il 7,)
k
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Our Proposed Method: RLogic

* Two components

Relation embeddings

* 1 Relation path encoder:

reduces a relation path 7, into a p ognied| — mb - o

single head r;, by recursively ! I

merge relation pairs in 1, Q| q

mmM‘ Calculation of g | FC Layer | Calculation of q

- 2 Close ratio predictor: bridges S S0l

the gap between “ideal prediction”

following logical rules and “real FC Layer

observation” by predicting i il T

predicting the ratio that the

relation path r;, will close. asMotheasMother hasSon
4.—( Gino )

Closed Path hasBrother

* Training process hasUncle

L

t

« Sample closed path instances
and maximize their likelihood
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Future Works

« Extend the RLogic to learn rules directly from unstructured natural
language
* Challenges: relations are not directly provided as a graph

* Possible solution: having an end-to-end differentiable encoder for producing the fact

embeddings conditioned on the text
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Thank you!

Q&A
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