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Knowledge Graphs
• A knowledge graph is a collection of real-world facts.
• They enable many downstream applications (NLP tasks, QA systems, etc)
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Knowledge Graph Reasoning
• Knowledge graphs are usually incomplete

• A fundamental task: predicting missing links (or facts) by reasoning on
existing facts
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Symbolic Methods & Neural Methods
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Neural-Symbolic Reasoning
Leverage the advantages of both neural and symbolic reasoning for 
knowledge graph reasoning

• Symbolic: ability of using domain knowledge, interpretability
• Neural: efficiency, capacity

One of the Challenges: Domain knowledge is encoded as 
logical rules, logical rules are usually need to be specified by 

hand
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Logical Rule Induction/Learning

liveIn(a,c) ⇐ liveIn(a,b) ∧ isLocatedIn(b,c)

Logical Rules

• Given: a background KG ℊ

• Goal: learn weighted chain-like Horn rule of the following form

where α∈[0,1] is the confidence score associated with this rule, indicating how likely 
the rule holds true.
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GAP Between Instance Rules and Template Rules

Template Rule
hasGrandMother(x, y) ⇐ hasMother(x, z) ∧ hasMother(z, y)

Instance Rules
hasGrandMother(Amy, Cara) ⇐ hasMother(Amy, Bess) ∧ hasMother(Bess, Cara)

hasGrandMother(Bess, Dana) ⇐ hasMother(Bess, Cara) ∧ hasMother(Cara, Dana)
hasGrandMother(Cara, Eva) ⇐ hasMother(Cara, Dana) ∧ hasMother(Dana, Eva)

How to bridge the gap between 
instance level observation and schema

level abstraction?



• Rely on observed rule instances to evaluate the plausibility of logical rules.
 Limited scalability to KG size
 May not be reliable due to the widely existing missing facts in KGs

• Ignore deductive nature of logical rules 
 i.e., the ability to recombine known parts and rules to form new sequences while reasoning over 

relational data
 e.g.,

Previous Works
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Question         ?⇐ hasMother(𝒙𝒙, 𝒛𝒛𝟏𝟏) ⋀ hasMother(𝒛𝒛𝟏𝟏, 𝒛𝒛𝟐𝟐) ⋀ hasSon(𝒛𝒛𝟐𝟐, 𝒚𝒚)

hasMother(𝒙𝒙, 𝒛𝒛𝟏𝟏) ⋀ hasMother(𝒛𝒛𝟏𝟏, 𝒛𝒛𝟐𝟐) ⋀ hasSon(𝒛𝒛𝟐𝟐, 𝒚𝒚)

hasGrandMother(𝒙𝒙, 𝒛𝒛𝟏𝟏)

hasUncle(𝒙𝒙, 𝒛𝒛𝟏𝟏)
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• Propose a new measure for rule evaluation based on the probability
that the rule body can be replaced by the rule head

hasGrandMother(x, y) ⇐ hasMother(x, z) ∧ hasMother(z, y)

Confidence: 3/4

approximate

Our Proposed Method: RLogic



How to Incorporate Inductive Nature
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• A representation-learning based model can be used to learn q(𝑟𝑟ℎ = 𝑟𝑟i|𝒓𝒓𝐛𝐛)

 E.g, a sequential model, such as RNN
 However, RNN directly models the entire sequence length without 

explicitly capturing the deductive nature of logical rule

How to incorporate inductive nature to 
break the learning into recursive process? 



• Basic idea: push deductive reasoning into rule learning

 reduce a long relation path [𝑟𝑟𝑏𝑏1, 𝑟𝑟𝑏𝑏2,…, 𝑟𝑟𝑏𝑏n] by replacing the relation pair 
[𝑟𝑟𝑏𝑏i, 𝑟𝑟𝑏𝑏i+1] in relation path with their head 𝑟𝑟ℎ recursively until the relation 
path being transformed into a single head

• E.g., given a relation path [𝑟𝑟𝑏𝑏1, 𝑟𝑟𝑏𝑏2, 𝑟𝑟𝑏𝑏3] 

Relation Path Encoder
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Our Proposed Method: RLogic
• Two components

• 1 Relation path encoder: 
reduces a relation path 𝑟𝑟𝑏𝑏 into a 
single head 𝑟𝑟ℎ by recursively 
merge relation pairs in 𝑟𝑟𝑏𝑏

• 2 Close ratio predictor: bridges 
the gap between “ideal prediction” 
following logical rules and “real 
observation” by predicting 
predicting the ratio that the 
relation path 𝑟𝑟𝑏𝑏 will close.

• Training process
• Sample closed path instances 

and maximize their likelihood 



Future Works
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• Extend the RLogic to learn rules directly from unstructured natural 

language 

• Challenges: relations are not directly provided as a graph

• Possible solution: having an end-to-end differentiable encoder for producing the fact 

embeddings conditioned on the text



Thank you!
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Q & A


	Slide Number 1
	Knowledge Graphs
	Knowledge Graph Reasoning
	Symbolic Methods & Neural Methods
	Neural-Symbolic Reasoning
	Logical Rule Induction/Learning
	GAP Between Instance Rules and Template Rules
	Previous Works
	Our Proposed Method: RLogic
	How to Incorporate Inductive Nature
	Relation Path Encoder
	Our Proposed Method: RLogic
	Future Works
	Slide Number 14

