

Developing artificial-intelligent techniques for turbulence

Kai Fukami

kfukami1@g.ucla.edu

2022 Amazon Fellows Lightning talks: Feb. 23, 2023

Turbulent flow reconstruction

- Gaining situational awareness of fluid flows from limited measurements has been a challenging issue
 - Useful for controlling and understanding fluid flows
 - Automobile, airplane, fluid-based machines
- We are capable of computationally and experimentally measuring complex flow fields
- Extraordinal development of computational and experimental resources

• Can we leverage **machine learning** techniques for fluid flow reconstruction?

Super-resolution analysis

- One of the reconstruction methods in the image tasks
- Reconstructs high-resolution (HR) signal from low-resolution (LR) signal

Google RAISR

Machine-learning-based super resolution x Fluid flows

• We have been working on supervised-learning-based super-resolution analysis of turbulent vortical flows.

- Super resolution in space and inbetweening in time
- The idea can be extended to sparse sensor measurements
- Special care is needed for the construction of neural networks to account for multi length scales

UCLA Samueli Mechanical & Aerospace Engineering

4

Machine-learning-based super resolution x Fluid flows

• A general framework for a broad range of applications in fluid mechanics

Sparse sensor reconstruction

•	٠	٠	۰	٠	٠	•	•	•	۰	•
•				•	٠					•
٠					•		•	•	٠	•
۰	•		•		٠	•		•	•	
۰		•			•	•	•		•	
٠				٠	•	•		•	٠	
•	•	•		•		•	•		•	•
•	•						٠			
٠	•	•			٠			٠	٠	
•	•	•	•	•	•		٠	٠	•	
•	•	•		•	٠				•	•

Wall-normal

Erichson et al., Proc. Roy. Soc. A., 2020

Denoising / Noise removal

Scherl et al., Phys. Rev. Fluids, 2020

Turbulence modeling

5

Maulik and San, J. Fluid Mech., 2017

Machine-learning-based super resolution x Fluid flows

 Surveys the recent studies for machine-learning-based super-resolution analysis for fluid flows

SUPER-RESOLUTION ANALYSIS VIA MACHINE LEARNING: A SURVEY FOR FLUID FLOWS

A PREPRINT

Kai Fukami^[1,*], Koji Fukagata^[2], Kunihiko Taira^[1]

 Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan Corresponding author: kfukami1@g.ucla.edu

ABSTRACT

This paper surveys machine-learning-based super-resolution reconstruction for vortical flows. Super resolution aims to find the high-resolution flow fields from low-resolution data and is generally an approach used in image reconstruction. In addition to surveying a variety of recent super-resolution applications, we provide case studies of super-resolution analysis for an example of two-dimensional decaying isotropic turbulence. We demonstrate that physics-inspired model designs enable successful reconstruction of vortical flows from spatially limited measurements. We also discuss the challenges and outlooks of machine-learning-based super-resolution analysis for fluid flow applications. The insights gained from this study can be leveraged for super-resolution analysis of numerical and experimental flow data.

6

Ongoing studies for practical scenes

• Applications to turbulent flows around industrial fluid-based machines and airplanes

Fukami et al., J. Fluids Eng., 2022

- Acknowledgements
 - UCLA-Amazon Science Hub for Humanity and Artificial Intelligence
 - Professor Kunihiko Taira (UCLA)
 - Professor Koji Fukagata (Keio Univ., Japan)

Welcome your feedback!

Kai Fukami (kfukami1@g.ucla.edu)