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Main Interest

• Robots are supposed to be autonomous, but to 
fulfill this requirement, they must constantly adapt 
and learn on their own

• How to use planning, vision, mapping, controls, 
and estimation simultaneously within an end-to-end 
framework for autonomous behavior

Completely Autonomous Robots
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Risk-Averse MPC via Visual-Inertial Input and 
Recurrent Networks for Online Collision Avoidance 

Alexander Schperberg, Kenny Chen, Stephanie Tsuei, Michael Jewett, Josh Hooks
Stefano Soatto, Ankur Mehta, and Dennis Hong



•Use MPC for high-level online path planning, informed by 
an object detection system and an RNN (trained on SLAM
algorithms and estimations)

Project 1

SLAM + Object Detector Machine learning

Path Planning

Autonomous Planning
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‘filter’ propagation vs RNN propagation for state 
uncertainties 
• Filter (e.g., particle, KF, EKF): assumes constantly increasing uncertainty 

propagation between the current and next measurement update

• RNN: dynamically changing uncertainty propagation between the current and 
next measurement update
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1https://github.com/ucla-vision

Running XIVO1 (SLAM) on the TUM2 DatasetRunning XIVO1 (SLAM) on our Quadruped

Building RNN model to predict future uncertainty with SLAM algorithm

2https://vision.in.tum.de/data/datasets/rgbd-dataset

Our RNN model is built with real IMU + Camera data for Simulation

https://github.com/ucla-vision
https://vision.in.tum.de/data/datasets/rgbd-dataset


B) Naïve MPC 
(uncertainty is 

static and inflated)

C) MPC with RNN 
(uncertainty is dynamically 

propagated)

Videos includes object detection
and are sped up
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Methods – Overall Process
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Real-to-Sim: Deep Learning with Auto-Tuning to Predict 
Residual Errors using Sparse Data

Alexander Schperberg*, Yusuke Tanaka, Feng Xu

Marcel Menner, and Dennis Hong

*Corresponding author email: aschperb@gmail.com





Auto-Tuning Force Controller for Contact-Rich Robotic 
Systems using an Unscented Kalman Filter

Alexander Schperberg*, Yuki Shirai, Xuan Lin, Yusuke Tanaka, and Dennis Hong

*Corresponding author email: aschperb@gmail.com



Combining the experience of past works towards 
autonomous locomotion and manipulation
• For robots to be not just autonomous but useful for diverse sets of tasks we 

need to do loco-manipulation 



Project Objective

• A climbing robot is the perfect to test loco-manipulation problems

• Must autonomously climb over a discrete surface (locomotion and 
manipulation through grasping and object)

• Need to address estimation, vision (i.e., mapping the environment), 
planning (finding a graspable hold), and control (moving a limb to the 
bouldering hold in the correct configuration and smoothly) 
simultaneously



Robot to be used - SCALER
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Building the Simulator



Dealing with Depth Images



Reinforcement Learning
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Reinforcement Learning – Flow chart
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Reinforcement Learning – Reward functions
❑ Cost function rewards
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❑ Joint Motion Rewards

1. Limit sudden velocity 
and acceleration 
changes

2. Avoid being outside 
workspace

3. Energy Efficiency

❑ Variable definitions

-- Center of Mass Pos𝑟𝑡
-- Center of Mass Angle𝜃𝑡

-- Wrist position𝑝𝑡
-- Wrist orientation𝑞𝑡

-- ground reaction force𝜆𝑡

-- ground reaction torque𝜏𝑡
𝑥𝑔 -- goal state

𝑝𝑡
𝐺

-- Fingertip position

𝑞𝑡
𝐺

-- Fingertip orientation𝑑𝑡 -- distance between fingertips
𝑥𝑡 = 𝑟𝑡, 𝜃𝑡 , 𝑝𝑡 𝑞𝑡, 𝑑𝑡

𝑇

𝑢𝑡 = 𝜆𝑡, 𝜏𝑡
𝑇

States/Actions



Reinforcement Learning – Parameter description

𝑛𝑜𝑛 𝑝𝑟𝑒𝑣 = {𝜃𝑡
0:6, 𝑥𝑡, 𝑢𝑡 , 𝑜𝑡

𝑖𝑚𝑔
}

❑ Non-privileged info

❑ Privileged info

𝑝𝑟𝑒𝑣 = {𝜇, 𝑥𝑔, 𝜃𝑡
𝑓1
, 𝜃𝑡

𝑓2
, 𝑤𝑡

𝑖,𝑗
, ∀𝑖,j}

❑ Actions

𝑜𝑏𝑠 = {𝜃𝑡
0:6, 𝑥𝑡, 𝑢𝑡, 𝑜𝑡

𝑖𝑚𝑔
}

❑ Observation State

Teacher Policy

𝑜𝑏𝑠 = {𝜃𝑡
0:6, 𝑥𝑡, 𝑢𝑡, 𝑥𝑔, 𝜇, 𝜃𝑡

𝑓1
, 𝜃𝑡

𝑓2
, 𝑤𝑡

𝑖,𝑗
, 𝑜𝑡

𝑖𝑚𝑔
, ∀𝑖, 𝑗}

❑ Observation State

Student Policy

❑ New Variable definitions

𝜃𝑡
0:6

𝑜𝑡
𝑖𝑚𝑔

𝜇

𝜃𝑡
𝑓1

𝜃𝑡
𝑓2

-- Joint angles

-- Depth/ image

-- coefficient of 
friction

-- angle normal to 
bouldering hold, finger 1

-- angle normal to 
bouldering hold, finger 2

𝑥𝑡 = 𝑟𝑡, 𝜃𝑡 , 𝑝𝑡 𝑞𝑡, 𝑑𝑡
𝑇

𝑢𝑡 = 𝜆𝑡, 𝜏𝑡
𝑇

w -- wrench



PRELIMINARY RESULTS

𝑛𝑜𝑛 𝑝𝑟𝑒𝑣 = {𝜃𝑡
0:6, 𝑥𝑡, 𝑢𝑡 , 𝑜𝑡

𝑖𝑚𝑔
}

❑ Non-privileged info

❑ Privileged info

𝑝𝑟𝑒𝑣 = {𝜇, 𝒙𝒈, 𝜃𝑡
𝑓1
, 𝜃𝑡

𝑓2
, 𝑤𝑡

𝑖,𝑗
, ∀𝑖,j}

❑ Actions

𝑜𝑏𝑠 = {𝜃𝑡
0:6, 𝑥𝑡, 𝑢𝑡, 𝑜𝑡

𝑖𝑚𝑔
}

❑ Observation State

Teacher Policy

𝑜𝑏𝑠 = {𝜃𝑡
0:6, 𝒙𝒕, 𝑢𝑡 , 𝒙𝒈, 𝜇, 𝜃𝑡

𝑓1
, 𝜃𝑡

𝑓2
, 𝑤𝑡

𝑖,𝑗
, 𝑜𝑡

𝑖𝑚𝑔
, ∀𝑖, 𝑗}

❑ Observation State

Student Policy

❑ New Variable definitions

𝜃𝑡
0:6

𝑜𝑡
𝑖𝑚𝑔

𝜇

𝜃𝑡
𝑓1

𝜃𝑡
𝑓2

-- Joint angles

-- Depth/ image

-- coefficient of 
friction

-- angle normal to 
bouldering hold, finger 1

-- angle normal to 
bouldering hold, finger 2

𝑥𝑡 = 𝑟𝑡, 𝜃𝑡 , 𝒑𝒕, 𝑞𝑡, 𝑑𝑡
𝑇

𝑢𝑡 = 𝜆𝑡, 𝜏𝑡
𝑇

w -- wrench
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