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Data is the new fuel!

Data is the fuel. Language Training Data Size Vision Training Data Size
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Problem 1: Large Data Makes Training Expensive

Example: ChatGPT is fine-tuned from GPT-3
Training GPT-3 used 45TB data

Energy Consumption: 1,287 MWh
- 17.8x average American yearly energy consumption!

CO2 Emission: 552 tons
- same as driving a car from Earth to the Moon and then back!
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Problem 2: Large Data is Vulnerable to Poisoning Attacks

Large data is often crawled from the internet, thus it's vulnerable to data poisoning attacks:
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Problem 3: Large Real-world Data are Biased toward the Majority

Waterbirds
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My research addresses these problems by
developing theoretically rigorous methods to
improve efficiency and robustness of
learning from large data
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Gradient information Can Help Address the Above Problems!

Clustering the training examples
by their gradients gives lots of

Size=10 useful information.
[
Q.0 0.0.{
. 0% ¢ o This is a submodular problem:
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Size=1 very fast to solve with a greedy

algorithm which guarantees a near-
optimal solution!
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1. Fast Training by Using Only Centers of Gradient Clusters

Size=21
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We use centers and sizes of
clusters to estimate the gradients
of their clusters to speed up the
training.



1. Fast Training by Training Only Centers of Gradient Clusters

Comparable Accuracy
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The only algorithm speeds up training
on very large data and models
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2. Robust Training against Data Poisoning Attacks

Size=10
[
I .:0'; We removes size-1 clusters which
Size=21 ¢ ¢*°&® y usually contain examples with
° ® - outlier gradients to prevent data
* X poisoning attacks.
Size=1
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2. Robust Training against Data Poisoning Attacks

ATTACK SENARIO UNDEFENDED DEFENDED
ATT Succ.T | TEST Acc.t JATT Succ.| | fTEST AcC.T
Breaks the
GRADIENT MATCHING FROM-SCRATCH 45% 94.95% 1% 90.26%
Defend all SLEEPER AGENT (BACKDOOR) ~ FROM-SCRATCH | 78.54% 94.42% 11.55% 88.28% | attacks!
kinds of BULLSEYE POLYTOPE TRANSFER 86% 07.60% P 1% 94.80% i
Theoretically
| FEATURE COLLISION TRANSFER 40% 94.68% 0% 94.81%
attacks! guaranteed good
BULLSEYE POLYTOPE FINETUNE 80% 92.24% 0% 92.38% . .
generalization!
EPOCH DEFENSE ATTACK SucCcC.| TEST AcC.T TIME(HR:MIN)
40 NONE 25% 92.48% 00:15
40 DEEPKNN (PERI ET AL., 2020) 21% 91.86% 02:25
40 SPECTRAL SIGNATURES (TRAN ET AL., 2018) 17% 90.13% 00:40
40 ACTIVATION CLUSTERING (CHEN ET AL., 2019) 9% 84.20% 00:31
40 DirF. Priv. SGD (HONG ET AL., 2020) 2% 70.34% 00:16
F _H_H_ N N |
40 ADV. POISONING-0.25 (GEIPING ET AL., 2021A) 4% 91.48% 01:53 |
40 ADV. POISONING-(.5 (GEIPING ET AL., 2021A) 1% 90.67% i 02:02 |
40 ADV. POISONING-0.75 (GEIPING ET AL., 2021A) 0% 87.97% | 02:26 | 6 f t '
40 EPIc-0.1 (PROPOSED) 2.7%+0.6% 90.92%+0.26% 1 00:22 | X Taster:
40 OurS EPIc-0.2 (PROPOSED) 1.3%+0.6% 88.95%+0.08% 1 00:19 |
40 EPIc-0.3 (PROPOSED) 1.0%+0.0% 87.03%+0.11% 1 00:17 |
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(Follow-up) Robust Training against Data Poisoning Attacks
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UCLA Samueli Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attacks. (NeurlPS 2022)
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3. Improving Performance on Minority by Balancing the Gradient Clusters

Size=10
AN 0% We make gradient clusters
Size=21 %5 @ balanced in size to improve the
<o performance on minorities.
& )
Size=1

e Sampled in one iteration
© Not sampled
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3. Improving Performance on Minority by Balancing the Gradient Clusters

X

Learned Learned
background! birds!

Original Ground-truth ERM Ours

Blonde

Waterbirds

Accuracy: Accuracy: ERM: Ours:
67% 87% 43%  83%

- Improve the accuracy of minority by 20-40%)!
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(Follow-up) We Fix Large Vision-Language Models Too!

Text Data

Ground-truth

Pepper the
aussie pup

Learned
background!

Train in pairs on Vision- PR LT
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state-of-the-art
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Image Data
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Takeaways

We used gradient clustering to solve the following major problems in deep learning:

Problem 1: Large Data Makes Training Expensive!
- 2Xx speedup + comparable accuracy!

Problem 2: Large Data is Vulnerable to Poisoning Attacks/
- ~0% attack success rate + 6x faster than other defenses!

Problem 3: Large Data are Biased toward the Majority!
- Improves worst-group performance by 20-40%!

Thank you!
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