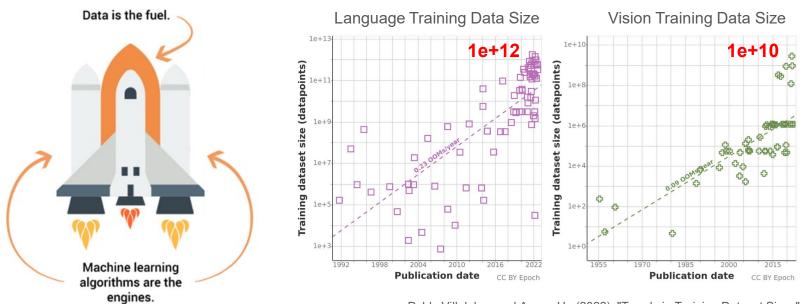


Efficient and Robust Deep Learning on Large Data

Yu Yang PhD Student, Computer Science Department This talk includes joint work with: Tian Yu Liu, Eric Gan, Hao Kao, Gintare Karolina Dziugaite, Besmira Nushi, Hamid Palangi, Baharan Mirzasoleiman (advisor)

Data is the new fuel!



Pablo Villalobos and Anson Ho (2022), "Trends in Training Dataset Sizes".

Problem 1: Large Data Makes Training Expensive

Example: ChatGPT is fine-tuned from **GPT-3** Training **GPT-3** used 45TB data

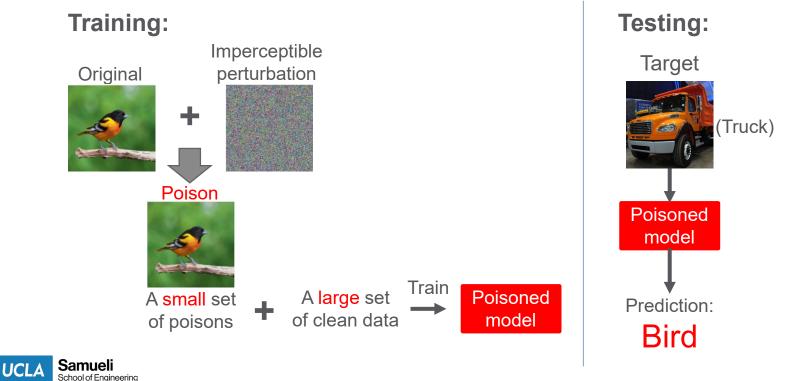
Energy Consumption: 1,287 MWh → 17.8x average American yearly energy consumption!

CO2 Emission: 552 tons

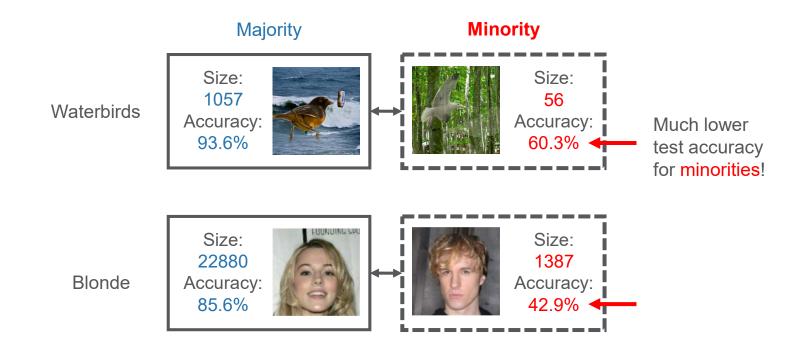
→ same as driving a car from Earth to the Moon and then back!

Problem 2: Large Data is Vulnerable to Poisoning Attacks

Large data is often crawled from the internet, thus it's vulnerable to data poisoning attacks:

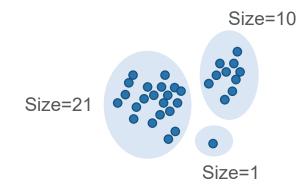


Problem 3: Large Real-world Data are Biased toward the Majority



My research addresses these problems by developing theoretically rigorous methods to improve efficiency and robustness of learning from <u>large data</u>

Gradient information Can Help Address the **Above Problems**!

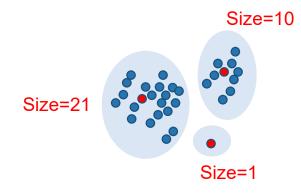


Clustering the training examples by their gradients gives lots of useful information.

This is a submodular problem: $F(S^*) = \sum_{i \in V} \min_{j \in S^*} \|\nabla f_i(w) - \nabla f_j(w)\| \le \epsilon$

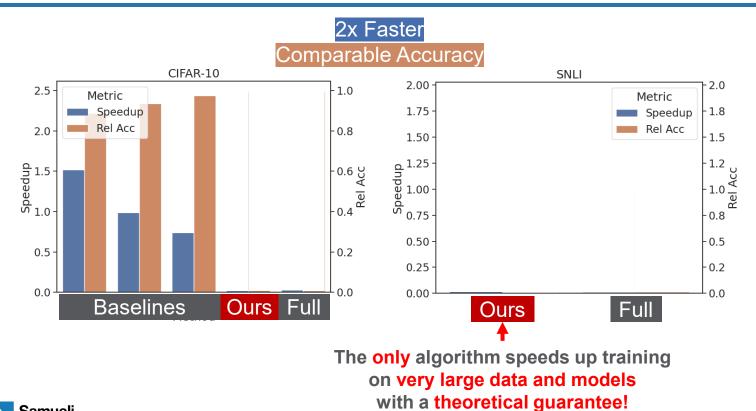
very fast to solve with a greedy algorithm which guarantees a nearoptimal solution!

1. Fast Training by Using Only Centers of Gradient Clusters

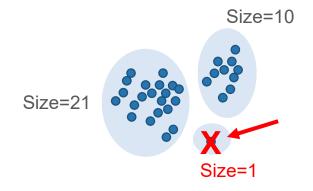


We use centers and sizes of clusters to estimate the gradients of their clusters to speed up the training.

1. Fast Training by Training Only Centers of Gradient Clusters



2. Robust Training against Data Poisoning Attacks

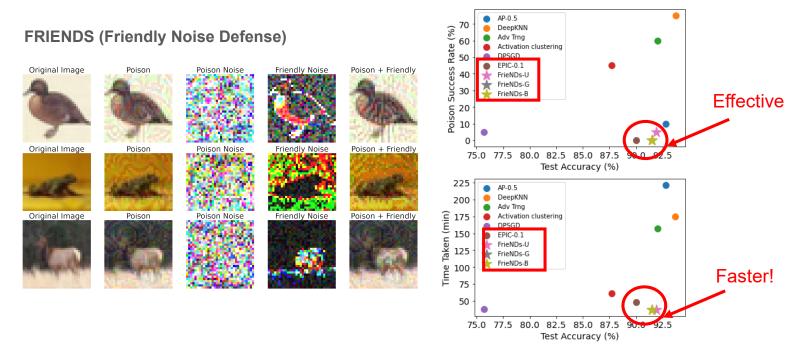


We removes size-1 clusters which usually contain examples with outlier gradients to prevent data poisoning attacks.

2. Robust Training against Data Poisoning Attacks

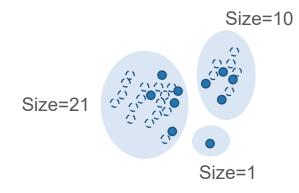
								-
	Attack		Senario	Undefended		DEFENDED		-
				ATT SUCC.↑	TEST ACC.↑	ATT SUCC.↓	TEST ACC.↑	Breaks the
Defend all kinds of attacks!	GRADIENT MATCHING		FROM-SCRATCH	45%	94.95%	1%	90.26%	
	SLEEPER AGENT (BACKDOOR)		FROM-SCRATCH	78.54%	94.42%	11.55%	88.28%	attacks!
	BULLSEYE POLYTOPE		TRANSFER	86%	94.69%	1%	94.80%	Theoretically
	FEATURE COLLISION		TRANSFER	40%	94.68%	0%	94.81%	guaranteed good
	BULLSE	YE POLYTOPE	FINETUNE	80%	92.24%	0%	92.38%	•
								generalization!
	Еросн	DE	FENSE	ATTAC	к Succ.↓ П	`est Acc.↑	TIME(HR:MIN)	
	40	N	ONE	2	.5%	92.48%	00:15	
	40	DEEPKNN (PERI ET AL., 2020) Spectral Signatures (Tran et al., 202		2	1%	91.86%	02:25	
	40			18) 1	7%	90.13% 00:40	00:40	
	40	ACTIVATION CLUSTER	ING (CHEN ET AL., 20	019)	9%	84.20%	00:31	
	40	DIFF. PRIV. SGD (Hong et al., 2020)		2%	70.34%	00:16	
	40	Adv. Poisoning-0.25	(GEIPING ET AL., 20	21A)	4%	91.48%	01:53	
	40	Adv. Poisoning-0.5	GEIPING ET AL., 202	21A)	1%	90.67%	02:02	
	40	Adv. Poisoning-0.75	(GEIPING ET AL., 20)	21A)	0%	87.97%	02:26	6x faster!
	40	EPIC-0.1	(Proposed)	2.7%	$\pm 0.6\%$ 90.	92%±0.26%	00:22	UX laster!
	40	Ours EPIC-0.2	(Proposed)	1.3%	$\pm 0.6\%$ 88.	95%±0.08%	00:19	
	40		(PROPOSED)	1.0%	$\pm 0.0\%$ 87.	03%±0.11%	00:17	

(Follow-up) Robust Training against Data Poisoning Attacks



Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attacks. (NeurIPS 2022)

3. Improving Performance on Minority by Balancing the Gradient Clusters



We make gradient clusters balanced in size to improve the performance on minorities.

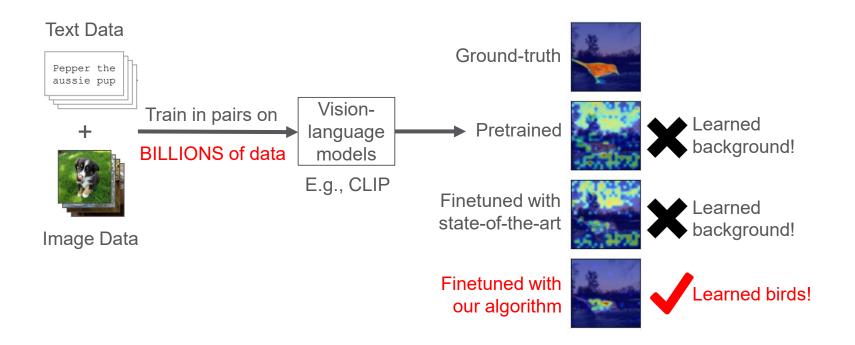
- Sampled in one iteration
- Not sampled

3. Improving Performance on Minority by Balancing the Gradient Clusters



\rightarrow Improve the accuracy of minority by 20-40%!

(Follow-up) We Fix Large Vision-Language Models Too!



Takeaways

We used gradient clustering to solve the following major problems in deep learning:

Problem 1: Large Data Makes Training Expensive!

 \rightarrow 2x speedup + comparable accuracy!

Problem 2: Large Data is *Vulnerable* to Poisoning Attacks! $\rightarrow \sim 0\%$ attack success rate + 6x faster than other defenses!

Problem 3: Large Data are *Biased* toward the Majority!
→ Improves worst-group performance by 20-40%!

Thank you!

