Learning and Probabilistic Inference with Constraints and its Applications

Zhe Zeng

Advisor: Prof. Guy Van den Broeck

Overview

• **Goal**: To enable machine learning models to perform learning and probabilistic inference under constraints

Bayesian Deep Learning [arithmetic constraints]

- Goal: Marginalization over the weight space
 - to aggregate models with low loss

Loss Surface

Predictions and Uncertainty

$$egin{aligned} p(y \mid oldsymbol{x}) &= \int p(y \mid oldsymbol{x}, oldsymbol{w}) \, p(oldsymbol{w} \mid \mathcal{D}) \, doldsymbol{w} \ && \mathbb{E}_{p(y \mid oldsymbol{x})}[y] = \int y \, p(y \mid oldsymbol{x}) \, dy \end{aligned}$$

under constraints from ReLU: $oldsymbol{x}\cdotoldsymbol{w}>0$

• **Solution**: efficiently and effectively by *Weighted Model Integration*

T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, A.G. Wilson. *Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs*, NeurIPS 2018 Z. Zeng, P. Morettin, F. Yan, A. Vergari, G. Van den Broeck. *Probabilistic inference with algebraic constraints: Theoretical limits and practical approximations*, NeurIPS 2020

Z. Zeng, G. Van den Broeck. *Collapsed Inference for Bayesian Deep Learning*, Beyond Bayes, ICML Workshop, 2022

Gradient Estimator for k-Subset [discrete constraints]

• Goal: Modeling a distribution of k-subsets of elements $p_{\theta}(\mathbf{z} \mid \sum z_i = k)$

Key Words (<i>k</i> = 10)	Taste Score
a lite bodied beer with a pleasant taste. was like a reddish color. a little like wood and caramel with a hop finish. has a sort of fruity flavor like grapes or cherry that is sort of buried in there. mouth feel was lite, sort of bubbly. not hard to down, though a bit harder then one would expect given the taste.	0.7

• Solution:

SIMPLE that computes exact samples and exact derivatives

Weakly Supervised Learning [discrete constraints]

• Goal: To train classifiers under weak supervisions

• **Solution**: To use *probability* of these *constraints on label counts* being satisfied as training objectives

Vinay Shukla, Zhe Zeng, Kareem Ahmed, Guy Van den Broeck. A Unified Approach to Count-Based Weakly-Supervised Learning.

Ongoing and Future Work

- To build machine learning models
 - that can deal with complicated constraints
 - and deliver accurate and efficient inference
- Applications to various fields
 - computational chemistry: metal-organic frameworks
 - more

• Thank you for your time!

• Q & A

• Email: zhezeng@cs.ucla.edu