

Artificial intelligence for Hemodynamic Analysis of Cardiovascular Medicine

Guorui (Gary) Chen, Ph.D. Candidate

Department of Bioengineering, UCLA

Amazon Fellows Lightning Talks

Jan. 25, 2024

What is Hemodynamics?

Hemodynamic analysis is vital for the **understanding** and **management** of CVDs

Hemodynamics: how **blood** flows through blood **vessels**

- Heart rate
- Flow velocity
- Blood pressure

Abnormal hemodynamics

Atherosclerosis (18.3 million people)

- Higher blood pressure
- Lower flow velocity

Samueli UCLA How to Implement Hemodynamic Analysis? Bioengineering A Implantable sensor Blood flow **Electrical** signals Hemodynamic analysis **Carotid artery** Graft sensor Graft sensor **Femoral artery** 200 100 Current (nA) 0 -100 -200↓ 2 10 8 6 Time (s) Stent sensor Time series signals

Can AI Facilitate Hemodynamics Interpretation?

UCLA Samueli Bioengineering

Case 1: Diagnose artery narrowing severities through CNN

Hemodynamic signals of different narrowing severities

Continuous wavelet transform Pre-trained Convolutional neural network

Conclusion and Perspective

Al for medicine

Treatment development Pathology

understanding

CVDs management

Hemodynamic database construction

Acquire extensive in *situ* data

Various CVD models to ensure robust AI performance and avoid bias

In situ hemodynamic data: the fuel powering medical AI transformation

Thank you!

Question Time