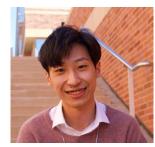
Harnessing Black-Box Control to Boost Commonsense in LMs' Generation

Yufei Tian,

Felix Zhang,



Nanyun (Violet) Peng

Motivations -- Why?

Challenge 1 - LLMs are unreliable and fail to generate commonsensical outputs at times

(a) Concepts	wear, sunglasses, at night
□ GPT-2	A young woman wearing a long dress and <mark>sun</mark> glasses at night.
□ Alpaca	We wore our sunglasses at night and enjoyed the stars.

(b) Concepts	food, customer, watch, employee, prepare
□ GPT-2	Two employees watch as customers prepare food in the store.
GPT-3 GPT-3 Davinci-003	The employee watched as the customer prepared their food.

Table 1. Examples of generative commonsense reasoning. We highlight the insensible phrases in orange.

Challenge 2 - It is computationally difficult for many parties to finetune PTLMs with billions of parameters.

Our solution – How?

A computational efficient way *to improve the commonsense* of pretrained language models *in a plug-and-play manner*.

- 1. We build a reference-free scorer that evaluates how CS a sentence is.
- 2. (Based on the recent development of controllable generation...)

We train a small auxiliary model to control a frozen PTLM by training on its *self-generated* samples.

Build Commonsense Scorer

- Step 1: *extract* tuples from a sentence
- Step 2: *assign* each tuple with a score by *grounding* them to a dynamic commonsense knowledge base.
- Step 3: The sentence-level score is then obtained by *aggregating tuple-level* scores.

Commonsense-Guided Generation

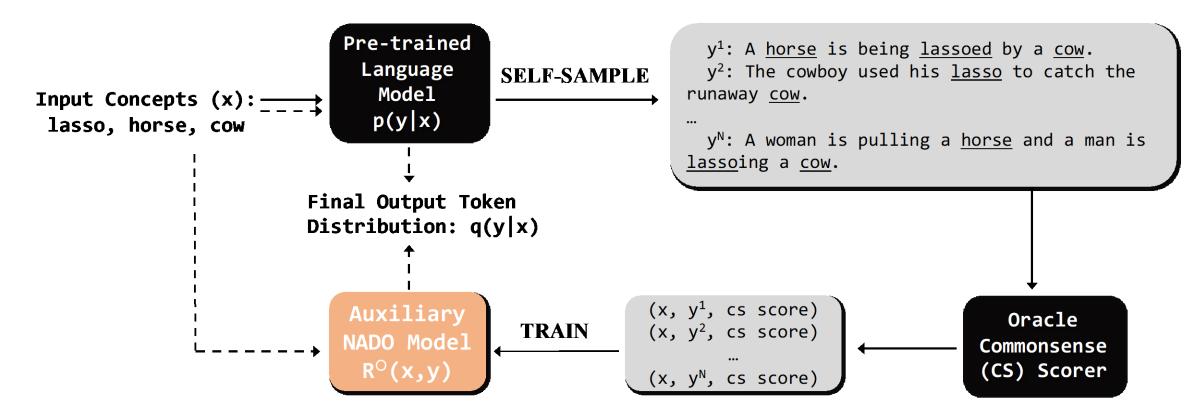


Figure 3. The process to steer a frozen PTLM with an additional neural model (NADO) and oracle commonsense scorer. The solid lines indicate the training process; the dashed lines indicate inference.

Results

1. Our approach is *effective* on across three different model architectures, with and without instruction tuning.

2. Few-Shot settings surpass finetuning – *quality* of dataset is more important than *size*

3. Human annotators find *ChatGPT more commensensical, but less exciting*

Winning System	BOOST CS	Same	ChatGPT
CS	30%	17%	53%
Overall	47%	25%	28%

Table 2. Pair-wise comparison with ChatGPT.

Comparison with ChatGPT

ChatGPT is too correct \rightarrow human have less fun.

Constraint: wear, sunglasses, at night

- ChatGPT: "It is not advisable to wear sunglasses at night as it can impede your vision and increase the risk of accidents."
- Boost: Someone wears sunglasses at night to avoid the bright lights of the approaching car.

Thank you!