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Research Overview

• Recent large-scale models exhibit strong capabilities on general tasks 
with large-scale datasets and training

• Trustworthiness
• Robustness: The model is reliable under adverse environments
• Ethics: The usage and outputs of the model is ethical

• Generalization
• Adaptation: The model can be efficiently adapted to a new task
• Transferability: Training on one task can be transferred to related tasks



Trustworthiness

• Robustness: The model is reliable under adverse environments 
• Evaluate and improve certified robustness against adversarial attack [1][2][3]

• Ethics: The usage and outputs of the model is ethical
• Red-teaming LLM detectors with attacks generated by LLMs [4]

Figure from DECODINGTRUST: A Comprehensive Assessment of Trustworthiness in GPT Models, Boxin Wang et. al

[1] On L_p Robustness of Ensemble Stumps and Trees, Yihan Wang, Huan Zhang, Hongge Chen, Duane Boning, Cho-Jui Hsieh
[2] Fast Certified Robust Training with Short Warmup, Zhouxing Shi*, Yihan Wang*, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh
[3] On the Convergence of Certified Robust Training with Interval Bound Propagation, Yihan Wang*, Zhouxing Shi*, Quanquan Gu, Cho-Jui Hsieh
[4] Red Teaming Language Model Detectors with Language Models Zhouxing Shi*, Yihan Wang*, Fan Yin*, Xiangning Chen, Kai-Wei Chang, Cho-Jui Hsieh (*Alphabetical)

https://proceedings.mlr.press/v119/wang20aa.html
https://arxiv.org/abs/2103.17268
https://yihanwang617.github.io/
https://arxiv.org/abs/2305.19713


Red Teaming Language Model Detectors with 
Language Models
• LLMs assistants are helpful for many tasks, which however also comes with 

the potential malicious usage.
• Many detection models or strategies are invented to detect machine-

generated texts from human-written ones.

• We did thorough red-teaming to three types of most common detection 
models against machine-generated texts

• Token-level watermarking, NN-based classifier and perturbation-based classifier
• We also designed a new prompt attack against NN-based classifier
• All the three types of detectors are not robust under some minor adversarial 

perturbations



Generalization

• Adaptation: The model can be efficiently adapted to a new task
• Parameter-efficient fine-tuning of LLMs [1]

• Transferability: Training on one task can be transferred to related 
tasks 

• A two-stage fine-tuning strategy with less specialization and more 
generalization [2] 

[1] Universality and Limitations of Prompt Tuning, Yihan Wang, Jatin Chauhan, Wei Wang, Cho-Jui Hsieh
[2] Preserving In-Context Learning Ability in Large Language Model Fine-tuning, Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S Dhillon, Sanjiv Kumar

https://arxiv.org/abs/2305.18787
https://arxiv.org/abs/2211.00635


Universality and Limitations of Prompt Tuning

• Recent large models such as T5, GPT, PaLM requires a large amount of 
computational resources for fine-tuning.

• Several parameter-efficient fine-tuning methods are proposed for fast 
and memory-efficient fine-tuning of these large models

• Prompt Tuning: A trainable prefix before the input
• LoRA: Low-rank update on the weight matrices
• Adapters: An adapter layer between transformer layers



Input Tuning v.s. Weight Tuning

• What’s the difference between tuning parameters before inputs and 
on the weights?

• Prompt tuning is empirically worse than LoRA with more unstable 
performance

• More trainable parameters in prompt tuning does not lead to significantly 
better performance

• Can we give some theoretical analysis to this inferior results?



Input Tuning v.s. Weight Tuning

• What’s the difference between tuning parameters before inputs and 
on the weights?

• Prompt tuning is empirically worse than LoRA with more unstable 
performance

• More trainable parameters in prompt tuning does not lead to significantly 
better performance

• Can we give some theoretical analysis to this inferior results?
• Yes. We theoretically proved that there are seq2seq datasets that prompt-

tuning cannot learn but weight-tuning can.



Finetuning with less specialization and more 
generalization
• A language learning task contains two types of information

• Format information: Input/output patterns that are specific to this task. Not 
transferrable to tasks with different format.

• Semantic information: Semantic relationship between inputs and outputs. 
Transferrable to related tasks with different formats.

What is the largest lake in the world?                                    the Caspian Sea

• Format: Generate a short phrase
• Semantics: Answer the question given by the input



Absorbing format with prompt tuning

• We want to separate format learning from semantic skill learning
• The format information can be provided in inference stage with either 

learned soft prompt or human designed hard prompt

• Proposed Method: A two-stage fine-tuning strategy

main model

soft prompt input

main model

soft prompt input

Stage 1: Stage 2:



Absorbing format with prompt tuning

• Evaluation tasks are unseen during fine-tuning
• ProMoT can have cross-task generalization from en-fr translation to en-de and en-ro



Thank you!
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