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● Metallic Glasses (MGs): Enjoy the advantages of plastics, metals, and ceramics.

● Scientists would like to explore material properties of MGs: Glass Transition, Plasticity, etc.
○ What is the glass transition point? 
○ How much force will cause plasticity? 

● These properties are complicated and are hard to study directly. 

● One approach is to study the energy barrier as an intermediate step, which is highly 
correlated with the material properties.
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Motivation : AI for Material Science Research
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● Energy Barriers: Measure the average energy difference between the atom’s 
stable state and the transition state.
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● Energy Barriers: Measure the average energy difference between the atom’s 
stable state and the transition state.

● Energy barriers can be computed from the local atomic structure, but the 
computation is slow.
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Background on Material Science

Individual Atom
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Project Goal

● Using AI models to efficiently predict the energy barrier from the local atomic 
structure.
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● We phrase energy barrier prediction as a graph node regression problem

● Atoms ⇒ Nodes, Connecting close atoms ⇒ Edges, Energy Barriers ⇒ Numeric labels

● Atom Type ⇒ Node Feature, Relative distance in 3D coordinates ⇒ Edge Feature
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A Graph Machine Learning Formulation of Energy Barrier Prediction

Energy barrier prediction

Image credit: Bapst, V., Keck, T., Grabska-Barwińska, A., Donner, C., Cubuk, E. 
D., Schoenholz, S. S., ... & Kohli, P. (2020). Unveiling the predictive power of 
static structure in glassy systems. Nature Physics, 16(4), 448-454.
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● Energy barriers are invariant under orthogonal transformations, e.g. reflection and 
rotation, of the atomic structure

● Existing AI models cannot capture this invariance thus lead to poor prediction performance

● We propose SymGNN 

Symmetrization module + message-passing module

Symmetrization by aggregating orthogonal transformations of the graph

Message-passing with attention on symmetrized edge features
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Challenges and Solutions
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SymGNN Model Architecture
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Experiments: Prediction Correlation

Training Score Testing Score

SymGNN (Ours) 0.85 0.78

GCN 0.15 0.10

GCN with Edge Features 0.80 0.71

Equivariant GNN 0.65 0.45

MLP 0.05 0.03
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● We explain the energy barrier predictions by identifying the important edges 
○ Find edges that can maximize the mutual information 
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Interpreting Energy Barrier Predictions

Global Version Local Version



Q & A



Extra Slides



8

● 6 Train Graphs, 1 Validation Graph, 2 Test Graphs. Each graph has ～8000 nodes and ～
260000 edges. Edge are constructed between nodes with Euclidean distance less than a 
threshold.
○ Collecting energy barrier data is challenging because simulating the true 

measurement is time consuming. 

● Model is trained on MSE loss, and performance is measured by the Pearson correlation
between the predicted energy barriers and the true energy barriers.
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Experiments: Datasets and Evaluation Metrics
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● We remove the symmetrization module to observe its effectiveness
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Ablation Studies

Training Score Testing Score

SymGNN 0.85 0.78

SymGNN with no symm 
module

0.87 0.71

● Significant performance dropped when we remove the symmetrization layer

Best model on validation set
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