

Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks

Shichang Zhang

with Haoyu Li, Longwen Tang, Mathieu Bauchy, Yizhou Sun

Motivation : Al for Material Science Research

- Metallic Glasses (MGs): Enjoy the advantages of plastics, metals, and ceramics.
- Scientists would like to explore material properties of MGs: *Glass Transition, Plasticity, etc.*
 - What is the glass transition point?
 - How much force will cause plasticity?
- These properties are complicated and are hard to study directly.
- One approach is to study the **energy barrier** as an intermediate step, which is highly correlated with the material properties.

Background on Material Science

• Energy Barriers: Measure the average energy difference between the atom's stable state and the transition state.

Background on Material Science

• Energy Barriers: Measure the average energy difference between the atom's stable state and the transition state.

Background on Material Science

Energy Barriers: Measure the average energy difference between the atom's stable state and the transition state.

Energy barriers can be computed from the local atomic structure, but the computation is **slow**. UCLA

Project Goal

• Using AI models to **efficiently** predict the energy barrier from the local atomic structure.

A Graph Machine Learning Formulation of Energy Barrier Prediction

• We phrase energy barrier prediction as a *graph node regression problem*

- Atoms ⇒ Nodes, Connecting close atoms ⇒ Edges, Energy Barriers ⇒ Numeric labels
- Atom Type ⇒ Node Feature, Relative distance in 3D coordinates ⇒ Edge Feature

UCL

Challenges and Solutions

- Energy barriers are *invariant under orthogonal transformations*, e.g. reflection and rotation, of the atomic structure
- Existing AI models *cannot* capture this invariance thus lead to poor prediction performance
- We propose SymGNN

Symmetrization module + message-passing module

Symmetrization by aggregating orthogonal transformations of the graph Message-passing with attention on symmetrized edge features

SymGNN Model Architecture

Experiments: Prediction Correlation

	Training Score	Testing Score
SymGNN (Ours)	0.85	0.78
GCN	0.15	0.10
GCN with Edge Features	0.80	0.71
Equivariant GNN	0.65	0.45
MLP	0.05	0.03

Interpreting Energy Barrier Predictions

- We explain the energy barrier predictions by identifying the important edges
 - Find edges that can maximize the mutual information

Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks 11

Q & A

Extra Slides

Experiments: Datasets and Evaluation Metrics

- 6 Train Graphs, 1 Validation Graph, 2 Test Graphs. Each graph has ~8000 nodes and ~ 260000 edges. Edge are constructed between nodes with Euclidean distance less than a threshold.
 - Collecting energy barrier data is challenging because simulating the true measurement is time consuming.
- Model is trained on <u>MSE loss</u>, and performance is measured by the <u>Pearson correlation</u> between the predicted energy barriers and the true energy barriers.

Ablation Studies

• We remove the symmetrization module to observe its effectiveness

	Training Score	Testing Score
SymGNN	0.85	0.78
SymGNN with no symm module	0.87	0.71

Best model on validation set

• Significant performance dropped when we remove the symmetrization layer